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ABSTRACT
In this paper we present a novel method for motion gen

tion task specification for spherical mechanisms. This is acc
plished with a new methodology for determining the optimal
sign sphere and the orientations on this design sphere for a
set of desired spatial positions. In addition, we include a m
fication to the method which enables the designer to require
one of then desired spatial positions be exactly preserved.
result is that designers can now specify spherical mechanism
tion generation tasks without having to introduce into the de
space an artificial design sphere. They are now free to wo
unconstrained three-dimensional space. The application o
new task specification technique is discussed in a design
study.

INTRODUCTION
Spherical mechanisms are linkages which generate m

on concentric spheres and are the simplest mechanisms
provide spatial movement. In contrast, planar mechanisms
erate two-dimensional motion. For this reason their desig
compatible with using conventional drafting tools while the s
thesis of spherical mechanisms is three-dimensional and i
well suited for drafting techniques. It is essential that the sp
ical mechanism designer be able visualize the entire proble
three-dimensions. Computer graphics can be an effective to

�Address all correspondence to this author.
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providing this necessary visualization of the problem to the
signer. Efforts have been made to create computer graphics b
software packages for spherical four-bar mechanism design

SPHINX was the first spherical mechanism computer-aided
sign(CAD) program written by Larochelle et al 1993 for use
Silicon Graphics workstations.SPHINX begins by displaying ade-
sign sphere. The design sphere defines the surface in sp
upon which the workpiece is to be moved. The relative d
placements between the positions on the design sphere are p
rotational and are calledorientations. Orientations are define
by their longitude, latitude, and roll angles(Larochelle and M
Carthy 1995). InSPHINX orientations are displayed to the design
as coordinate frames on the surface of the design sphere
Fig. 1. The current version ofSPHINX has modules for perform
ing synthesis for three or four position rigid body guidance.
is important to note that inSPHINX the design sphere is of arbitrar
radius and its location in space is undefined.

SPHINXPC (Ruth and McCarthy 1997) is a CAD program f
personal computers which likeSPHINX utilizes a design sphere wit
orientations displayed on the sphere’s surface. With this s
ware spherical mechanisms can be designed for four orientat
SPHINXPC also has the capability to design planar mechanism
four position rigid body guidance.

In 1995 Osborn and Vance developed the first virtual re
ity(VR) based approach to spherical mechanism design, ent
SPHEREVR. This initial exploration of the use of VR for spherica
mechanism design has led to the development of a 3rd gener-
ation of VR based spherical mechanism design software ca
Copyright  1998 by ASME



e
is
f

c-

rs
it
o

y
e
ed
s
h
it
r
h
tl
-
h

n
n
th

h

e

n
u

ign
ons.

hm
e
an

ce
bi-

ed

heir
lts to
for

n-
ed
ns
ori-
of

l por-

this
d to
ex-
nta-

ter-
y
e

Figure 1. SPHINX DESIGN SPHERE

ISIS, see Larochelle, Vance, and McCarthy 1998. The program
utilizes the compute engine ofSPHINX1.2 and provides virtual ob-
jects in the design environment so that the design process tak
place in a virtual representation of the physical workspace. Th
new approach to mechanism design has demonstrated a need
new and efficient means for specifying the design task in the a
tual physical workspace of the mechanism.

To synthesize a spherical mechanism, the designer must fi
define the task to be accomplished. Here we are concerned w
task specification for moving a workpiece through a sequence
prescribed orientations in space. This task is referred to asrigid-
body guidanceby Suh and Radcliffe 1978 and asmotion gener-
ation by Erdman and Sandor 1997. An example of a rigid bod
guidance task is shown in Fig. 2. The desired positions of th
workpiece are defined in space. A coordinate frame is attach
to the workpiece and its location, in each of the desired position
is recorded. To date, when designing spherical mechanisms t
designer must determine an appropriate design sphere, i.e.
center and radius, from the desired spatial positions. Moreove
the sets of angles which define the orientations of the body wit
respect to that design sphere must also be determined. Curren
no methodologies exist to facilitate this process. It is only af
ter determining the design sphere and the orientations that t
designer can utilize CAD tools such asSPHINX andSPHINXPC.

In this paper, one method of determining the optimal desig
sphere and orientations from a desired set of spatial positio
is presented. First, the spatial positions are approximated wi
orientations in four-dimensional Euclidean space(E4). Biquater-
nions are then used to represent these orientations. Next, t
distance between the spatial positions and the orientations on
candidate design sphere are calculated using a bi-invariant m
ric on biquaternions. Finally, an optimization method is used
to minimize the distances between the spherical orientations o
the candidate design sphere and the spatial positions. The res
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Figure 2. A DESIRED TASK

is a procedure which numerically determines the optimal des
sphere and orientations for a finite set of desired spatial positi

ORIENTATIONS IN E4 AND BIQUATERNIONS
In 1995 Larochelle and McCarthy presented an algorit

for approximating a set ofn positions in planar Euclidean spac
(E2) with n spherical orientations in three-dimensional Euclide
space (E3). By utilizing a bi-invariant metric on the image spa
of spherical displacements they arrived at an approximate
invariant metric for planar positions in which the error induc
by the spherical approximation is of the order1

R
2 , whereR is the

radius of the approximating sphere. In this paper we extend t
methodology to the general spatial case and utilize the resu
provide a novel method of specifying motion generation tasks
spherical mechanisms.

It was shown in Larochelle and McCarthy 1995 that orie
tations inE3 may be used to approximate positions in a bound
region of a two-dimensional plane. We utilize the contributio
of Etzel and McCarthy 1996 and extend that idea by using
entations inE4 to approximate positions in a bounded region
three-dimensional space. This can be done by using a smal
tion of a four-dimensional hypersphere, awedge, to approximate
a bounded region of space. Orientations on the surface of
wedge, which we represent with biquaternions, can be use
approximate the spatial positions. See Ge 1994 in which he
amines the theory of biquaternions as representations of orie
tions on a hypersphere.

We proceed by briefly reviewing quaternions and biqua
nions. Recall that an orientation inE3 can be represented b
a quaternionq = [q1 q2 q3 q4]

T . The four components of th
Copyright  1998 by ASME
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quaternionq, sometimes referred to as Euler parameters are

q1 = sx sin
θ
2
= sxs

θ
2

q2 = sy sin
θ
2
= sys

θ
2

q3 = szsin
θ
2
= szs

θ
2

q4 = cos
θ
2
= c

θ
2

(1)

wheres andθ are the rotation axis and the angle of rotation
sociated with the orientation, respectively. Note that the com
nents ofq satisfy the following constraint equation,

q2
1+q2

2+q2
3+q2

4�1= 0 (2)

and lie on a unit hypersphere which we denote asthe image space
of spherical displacements.

Recall that the position of a body inE3 has six degrees o
freedom (three to define orientation and three to define locat
and can be represented by a 4x4 homogeneous transform
1981):

T =

2
664

[R(θ;φ;ψ)]
... d

. . . . . . . . . . . . . . . .

0 0 0
... 1

3
775 (3)

[R(θ;φ;ψ)] = Roty(θ)Rotx(�φ)Rotz(ψ)

whered is a 3x1 translation vector. The anglesθ, φ, andψ are the
longitude, latitude, and roll angles respectively (see Laroch
and McCarthy 1995). In 1996 Etzel and McCarthy showed
a 4x4 homogeneous transform inE3 can be approximated by
pure rotation inE4:

[D] = [J(α;β;γ)][K(θ;φ;ψ)] (4)

where,

J(α;β;γ)] =

2
664

cα 0 0 sα
�sβsα cβ 0 sβcα
�sγcβsα �sγsβ cγ sγcβcα
�cγcβsα �sβcγ �sγ cγcβcα

3
775
3

ul

and,

K(θ;φ;ψ)] =

2
666666664

... 0

[R(θ;φ;ψ)]
... 0
... 0

. . . . . . . . . . . . . . . .

0 0 0
... 1

3
777777775

:

The anglesα, β and γ are defined as follows: tan(α) = dx
R

,

tan(β) = dy
R

, and tan(γ) = dz
R

wheredx, dy, anddz are the compo-
nents ofd andR is the radius of the hypersphere.

The bounded spatial workspace must represent a only sm
portion of the hypersphere (referred to as a wedge), hence
determine the radius of the hypersphere as:

R=
4L

ε
1
2

(5)

whereL is the largest component of the translation vectors fro
the set of spatial positions andε is the maximum allowable error
in the approximation of the spatial positions with the orientatio
in E4. Next, we review how to determine the biquaternion ass
ciated with the matrix[D].

Recall that biquaternions have the following form:

Ĝ = G+ωH (6)

whereG andH are quaternions andω is defined such thatω2 = 1,
see Ge 1994. The biquaternion can also be represented as a
dered pair of quaternionŝG = (G;H). The quaternionsG and
H are determined by the following computations. The four
components ofG andH areG4 = cos(µ) andH4 = cos(ν) re-
spectively, withµ and ν being the real part of the eigenvalue
from matrix [D]. The other three components ofG andH are
computed as follows:

G1 =
d23�d32+d14�d41

4H4

G2 =�(d31�d13+d42�d24
4H4

)

G3 =
d21�d12+d34�d43

4H4

H1 =
d32�d23�d14+d41

4G4

H2 =�(d31�d13�d42+d24
4G4

)

H3 =
d21�d12�d34+d43

4G4

wheredi j are the elements of[D]. From the above relations, it
is evident that there are three special cases which need to
Copyright  1998 by ASME
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addressed, see Etzel 1996. First, ifG4 = 0 then the first three
elements ofH are:

H1 =
d11+d44

2G1

H2 =
d22+d44

2G2

H3 =
d33+d44

2G3
:

Second, ifH4 = 0 then the first three components ofG are:

G1 =
d11+d44

2H1

G2 =
d22+d44

2H2

G3 =
d33+d44

2H3
:

Finally, if G4 = 0 andH4 = 0 then solve the following relation
for Hi(i=1,2,3):

d21�d43

H2
=

d11+d44

H1
=

d31+d42

H3

and obtainGi as in theH4 = 0 case above.

The Metric
There exist numerous useful metrics for defining the d

tance between two points in Euclidean space, however, d
ing similar metrics for determining the distance between t
positions of a rigid body is still an area of ongoing resear
In the case of two positions of a rigid body inE3 any metric
used to measure the distance between the positions yields
sult which depends upon the chosen reference frames, see
tinez and Duffy 1995. However, Ravani and Roth 1983 defi
the distance between two orientations inE3 as the magnitude o
the difference between their associated quaternions, which
bi-invariant metric. Recall that a bi-invariant metric is indepe
dent of choice of both the fixed and moving frames. Etzel
McCarthy 1996 extended this idea and presented a bi-inva
metric for orientations inE4. Here, we review their metric an
present a methodology which employs the metric to determ
the optimal design sphere associated with a finite set of sp
positions.

The bi-invariant metric on biquaternions is defined as:

d(Q̂;R̂) =
q

(Q�R)T(Q�R)+(S�T)T(S�T) (7)

whereQ̂ = (Q;S) andR̂ = (R;T) are both biquaternions. Fo
a proof that this metric is bi-invariant see Etzel and McCar
1996.
s
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Figure 3. OPTIMAL DESIGN SPHERE

OPTIMIZING THE DESIGN SPHERE
In Fig. 3 a spherical orientation on a design sphere is sho

To obtain the orientation frame relative to the fixed frame thr
coordinate frame transformations are applied. First, the mov
frame is translated along the 3x1 center vectorc. Next, the mov-
ing frame is rotated by the longitude, latitude, and roll angles
defined by Eq. 3. Third, the moving frame is translated along
3x1 radial vectorr . The spherical orientation is now defined b
the following 4x4 homogeneous transform:

Tspherical(r ;c) =

2
664

[R]
... [R]r +c

. . . . . . . . . . . . . . .

0 0 0
... 1

3
775

where[R] is the 3x3 rotation matrix defined in Eq. 3. LetTspatial

be the 4x4 homogeneous transform representation of a des
position of the workpiece in space. To determine the optim
design sphere the distance betweenTspatial andTspherical must be
minimized for each of then desired positions inE3. The next
section presents a method to minimize this distance by utiliz
the bi-invariant metric discussed above.

Optimization
Given a finite set ofn desired positions inE3 the task is to

determine the optimal design sphere and then orientations on
that sphere. By examining the homogeneous transform repre
tation ofTspherical it is clear that the optimization variables arer
andc since[R] may be extracted fromTspatial

1. The optimization
problem then becomes:

Minimize:

f (r ;c)

1Note that by extracting[R] in this manner we guarantee that the orientation
of then Tspherical will be identical to that of their associatedTspatial.
Copyright  1998 by ASME
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Figure 4. COMMON NORMAL OF TWO SCREW AXES

Subject to:

k r k � 2L

k c k � 2L

where:

f (r ;c) =
n

∑
i=1

d(Q̂i ;R̂i):

We utilize thesimplex method for function minimizationto
find r andc that minimize f (r ;c), see Nelder and Mead 1965
This method was selected since it does not require analy
gradients and it is a direct multidimensional minimization alg
rithm.

Initialization
If the n spatial positions are in fact spherical orientatio

then the center of the design sphere is located at the interse
of the relative screw axes associated with the positions. H
ever, with general spatial positions these relative screw axes
not intersect. Hence, we find the point nearest all of the rela
screw axes and use it as the initial center of the optimal de
sphere. In Fig. 4 the common normal associated with two rela
screw axes is shown. The intersections of the common nor
with the two screw axes arep andq. Note that if the screw axe
do not intersect then the point in space nearest the screw
is the midpoint of the segmentpq. The initial estimation of the
centerc is selected as the point nearest all of the relative sc
.
tical
o-
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ction
ow-
will
tive
sign
tive
mal

s
axes

rew

axes associated with the spatial positions:

cinitial =

l
∑

i=1
p+

l
∑
i=1

q

2l
(8)

wherel =
�m

2

�
andm=

�n
2

�
is the number of relative screw axes2.

The initialization ofr is obtained by equating the translation
vectors ofTspatial andTspherical. For any given spatial position the
radial vectorr of the design sphere is then,

r = [R]T(dspatial�c): (9)

Substitutingcinitial into Eq. 9 we obtain:

r = [R]T(dspatial�cinitial ): (10)

Using Eq. 10 we computer for each spatial position. The initial
estimation of the radial vector is then the average,

r initial =

n
∑

i=1
r

n
: (11)

Preserving One Position
It may be necessary for the designer to require that one

the desiredTspatial be preserved. In this case the design sphere
constrained to exactly preserve this one spatial position(refer
to asTexact). The design sphere is then optimized to minimiz
the distance between the remainingTspatial’sand their associated
Tspherical’s. Let us label the elements of the 4x4 homogeneo
transform representation ofTexact as,

Texact=

2
664

[Rexact]
... dexact

. . . . . . . . . . . . . . . .

0 0 0
... 1

3
775 :

By equating the translation vectors ofTexact andTspherical we ob-
tain:

dexact= [Rexact]r +c: (12)

We note that Eq. 12 is a linear system of three equations in
six unknown components ofr andc. The simplex method for

2Note that
�n

r

�
denotes the binomial coefficient, often referred to as “n choose

r”.
5 Copyright  1998 by ASME
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function minimization is employed to optimize the location
the center of the design spherec and Eq. 12 is used to determin
r at each iteration,

r = [Rexact]
T(dexact�c): (13)

SPHERICAL INDEX
Obviously, not all finite sets of general spatial positions c

be approximated with spherical orientations. Some sets of
tial positions are more near spherical than others and yield
ter spherical approximations while other sets of spatial positi
may be far from spherical and for these no acceptable sphe
approximations exist.

The method presented here does not guarantee an ac
able set of spherical orientations may be found for every se
general spatial positions. Recall that the purpose of this me
is to facilitate motion generation task specification for spher
mechanism design. The implication being that the set of spa
positions will benear sphericaland the method we present he
determines the exact spherical orientations which best app
imate the near spherical positions. As a measure of how
spherical the original spatial positions are we utilize the follo
ing spherical index�:

� =

m
∑

i=1
jdrelativej

4Lm
(14)

wheredrelative is the translation along the relative screw axes
sociated with two positions andm andL are as defined above
Sets of spatial positions with small� yield acceptable spherica
approximations while sets with large� will not yield acceptable
spherical approximations.

CASE STUDY
We now illustrate the task specification methodology by a

plying it to the motion generation task shown in Fig. 2. The lo
gitude, latitude, and roll angles(in degrees) and translation v
tors for the four desired spatial positions are found in Tbl. 1. T
spherical index value for these positions is�= 7:211E�8 which
indicates that these positions are very near spherical. Hence
anticipate that there exist spherical orientations which are v
near the original spatial positions and proceed with the num
ical nonlinear optimization. The initial estimates of the cen
and radial vectors arecinitial = [0:2227 0:2218 � 0:1629]T and
r initial = [�0:1084 0:2114 5:1736]T. The radius of the hyper
sphere isR = 2080, with ε = 0:0001 andL = 5:2. In Fig. 5
the optimal design sphere and orientations are shown.
spherical orientations are the position frames with thicker lin
6
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The optimal center and radial vectors for this design sphere
c= [0:1019 0:0791 0:0244]T andr = [�0:0771 0:0151 5:0821]T.
The optimal orientations(1’,2’,3’,4’) and their distances from th
original spatial positions are found in Tbl. 1.

Having now determined the orientations which best appr
imate the original spatial positions we can now useSPHINX to de-
sign a spherical four-bar mechanism to generate the desired
tion. The resulting mechanism, as displayed bySPHINX, is shown in
Fig. 6. In order to employ this design to generate the desired
tion manufacture the coupler for a radius ofk r k, manufacture
the remaining links at appropriate radii, mount the mechani
such that the center of its associated sphere is located atc, and
attach the workpiece to the coupler.

SUMMARY
In this paper we have presented a novel method for mot

generation task specification for spherical mechanisms. This
accomplished with a new methodology for determining the o
timal design sphere and the orientations on this design sp
for a finite set of desired spatial positions. Moreover, we ha
included a modification to the algorithm such that one of t
desired spatial positions is exactly preserved. The result is
mechanism designers can now specify spherical mechanism
tion generation tasks without having to introduce into the des
space an artificial design sphere. They are now free to wor
unconstrained three-dimensional space.

Finally, we believe that the utility of this new task spec
fication algorithm will be most evident when utilized in three
dimensional computer graphics design environments such
SPHINXPC andSPHINX. Moreover, we anticipate that it will be an ass
to the newISISvirtual reality spherical mechanism design enviro
ment currently being created in a collaborative effort lead by
J.M. Vance at Iowa State and Dr. P.M. Larochelle at Florida Te
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